Health & Medical Health & Medicine Journal & Academic

Novel Mitochondrial Mutation and Hypertrophic Cardiomyopathy

Novel Mitochondrial Mutation and Hypertrophic Cardiomyopathy

Abstract and Introduction

Abstract


Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population.

Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM.

Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells.

Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM.

Introduction


Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of the septum and left ventricular wall. In particular, HCM has a prevalence of 0.2% in the general population. HCM is the most common cause of sudden cardiac death in individuals younger than 35 years. Left ventricular remodelling with changes in wall thickness and cavity size occurs in a variety of cardiac diseases. In the HCM population, about 10% of patients progress to dilated cardiomyopathy with left ventricular remodelling by end stage HCM, which finally results in severe heart failure. Atrioventricular block (AVB) is a major reason for pacemaker implantation, which occurs when atrial depolarisation fails to reach the ventricles or is conducted with a delay. The pathogenesis of HCM remains poorly understood because of multifactorial causes, including hereditary and environmental factors. Familial HCM is inherited mainly as an autosomal-dominant trait and is attributed to mutations of sarcomeric genes. Cardiac β-myosin heavy chain (MYH7), cardiac myosin-binding protein C (MYBPC3), cardiac troponin T (TNNT2) and cardiac troponin I3 (TNNI3) together account for more than 75% of all HCM cases. Meanwhile, the maternal transmissions of HCM have been implicated in some pedigrees. This suggests that a mutation in mitochondrial DNA (mtDNA) is one of the molecular bases for this disorder. The first mtDNA point mutation associated with HCM was identified in the gene tRNA in 1991. Since then, several mutations have been reported to be associated with HCM. Our recent report showed that a mitochondrial ND5 12338T>C variant is associated with maternally inherited HCM in a Chinese pedigree. In HCM, the pathogenesis mtDNA include mitochondrial tRNAs and protein encoding genes, while mutations in mitochondrial rRNAs have rarely been reported. Meanwhile, the molecular pathogenesis of HCM in the Chinese population remains poorly understood.

In continued efforts to understand the role of the mitochondrial genome in the pathogenesis of HCM in the Chinese population, a systematic and extended mutational screening of mtDNA has been initiated in HCM subjects at the Cardiovascular Clinic in the First Affiliated Hospital, Zhejiang University School of Medicine, China. In the present study, we performed the clinical, genetic and molecular characterisation of a Han Chinese family with maternally inherited HCM. In this family, all (4/4) maternal members were affected with HCM combined with AVB, which is a rare phenomenon in the HCM population. Mutational analysis of the mitochondrial genome identified a novel homoplasmic 16S rRNA 2336T>C mutation, which presented exclusively in all the maternal members of this family. The 2336T>C mutation was evaluated by phylogenetic analysis, structure–function relationships and allelic frequency in control individuals. Furthermore, functional assays of the 2336T>C mutation were conducted through determination of mitochondrial oxygen consumption capacity, mitochondrial ATP synthesis and reactive oxidative species (ROS) production in lymphoblastoid cell lines derived from the maternal members carrying this mutation as compared with the controls. Mitochondrial ultrastructure was also observed by electron microscopy. The results indicated a mitochondrial defect in cell lines derived from maternal members.

Related posts "Health & Medical : Health & Medicine Journal & Academic"

Adalimumab or Etanercept Compared With Usual Care in RA

Journal

Advanced Therapy for Inflammatory Bowel Disease

Journal

Who Provides Care to Medicare Beneficiaries?

Journal

Bacteria and Possible Endocarditis Caused by M phenylpyruvica

Journal

Open Issues in TAVI Part 1

Journal

PTSD and Incident Heart Failure Among US Veterans

Journal

Perioperative Fluid Management: Science, Art or Random Chaos

Journal

The Etiology of Lung Cancer in Men Compared With Women

Journal

Malaria Disease Manifestations and Asymptomatic Malaria

Journal

Leave a Comment